

Sisal fiber-reinforced geopolymer composites:

tailoring durability via matrix composition

Henrique Almeida Santana Cleber Dias Federal University of Bahia (UFBA), Salvador-BA, Brazil

Henrique S. Almeida

Doctor in Civil Engineering by the Federal University of Bahia

Cleber Dias

Adjunct Professor at the Federal University of Bahia

Highlights

- The matrices of alkali-activated composites (AAC) can be as aggressive to sisal fibers as those of cementbased matrices
- The content of free ions in AAC is a critical factor affecting the degradation rate of vegetable fibers
- A high content of free ions in AAC can lead to rapid composite degradation, even under laboratory exposure
- After 120 days of natural weathering, sisal fibers play a significant role in maintaining the post-cracking load capacity

Topics of this presentation

- Brief contextualization
- Experimental procedures
 - Materials
 - Mixture design and optimization
 - Durability study
 - Lab exposure and natural weathering
- Results
- Conclusions

Brief contextualization

Geopolymers and alkali-activated binders

Adapted from Scrivener and Nonat (2011)

- Geopolymers or alkali-activated binders (AAB) are produced using a precursor material combined with an alkaline activator
- They can be classified as one-part or two-part AAB
- Research on vegetable fibers reinforced AAC is still in its early stages

Fiber-reinforced alkali-activated composites

Geopolymers or alkali-activated binder (AAB)

- High strength if well dosed
- Resistance to aggressive environment
- Low CO₂ depending on the precursor
- Like PC-based matrices, geopolymers presents a brittle fracture and low toughness

Vegetable fibers

- Improve strength and toughness
- Renewable
- Low cost
- Available in several developing countries

Known degradation mechanisms of fibers

Wei and Meyer (2015)

Durability studies

Main questions

- Do vegetable fibers deteriorate in alkaliactivated matrices?
- What are the possible mechanisms of degradation?
- How to mitigate the fibers degradation?
 - The use of pozzolans and carbonation for this purpose does not seem reasonable

Experimental procedures

Materials

- Precursors
 - Metakaolin
 - Heat-treated asbestos-cement waste (ACW_T)
- Activators
 - Liquid sodium silicate solution (LSS)
 - Liquid potassium silicate solution (LKS)
- 25 mm-long sisal fibers without treatment

S HC

flakes

Distilled Water

Precursors

Determination	Chemical composition (wt/wt %)			
Determination	Metakaolin	ACW _T		
SiO ₂	44.88	18.20		
Al ₂ O ₃	42.86	4.06		
Fe ₂ O ₃	4.82	2.35		
K ₂ O	0.72	0.34		
SO ₃	0.13	1.66		
MgO	0.67	7.27		
MnO	0.11	=		
CaO	-	(48.69)		
Others	1.41	``1.13´´		
LOI (1000 °C)	4.23	16.30		
Skeletal density (g/cm ³)	2.80	2.95		
Surface area BET (m²/g)	30.52	6.68		

Preparation of activators

Mixture design

	Mass fraction				
Series	MK ACW _T		Silicate solution		
F1	0.436	0.040	0.525		
F2	0.311	0.089	0.600		
F3 e F12	0.251	0.200	0.549		
F4, F10 e F11	0.350	0.100	0.550		
F5	0.400	0.100	0.500		
F6	0.200	0.200	0.600		
F7 e F15	0.414	0.000	0.586		
F8	0.500	0.000	0.500		
F9 e F16	0.325	0.175	0.500		
F13	0.360	0.040	0.600		
F14	0.254	0.146	0.600		
Min.	0.200	0.000	0.500		
Max.	0.500	0.200	0.600		

Molar ratios

- SiO_2/Al_2O_3 varied from 2.93 to 5.03
- CaO/SiO_2 varied from 0 to 0.39
- Na₂O/Al₂O₃ varied from 0.66 to 1.79 for LSS series
- K₂O/Al₂O₃ varied from 0.54 to 1.46 for LKS series

- Electrical conductivity
 - Depends on the content of free ions in the mixture
 - Obtained using cubes immersed in distilled deionized water and measuring the conductivity of solution after 2 h
- Compressive strength of cubes with 40 mm edges

- Electrical conductivity
 - Depends on the content of free ions in the mixture
 - Obtained using cubes immersed in distilled deionized water and measuring the conductivity of solution after 2 h
- Compressive strength of cubes with 40 mm edges

- Electrical conductivity
 - Depends on the content of free ions in the mixture
 - Obtained using cubes immersed in distilled deionized water, with the conductivity of the solution recorded after 2 hours
- Compressive strength test conducted on cubes with 40 mm edges

 Compressive strength of cubes with 40 mm edges

Optimized matrices

	Mass fraction		Properties			
Series*	МК	ACWT	Silicate solution	Compressive strength (MPa)	ρ (g/cm²)	σ (mS/cm)
Na _{min}	0.474	0.013	0.513	60.35	2.35	7.88
Na _{max}	0.286	0.127	0.586	40.42	2.14	28.60
K _{min}	0.490	0.000	0.510	57.36	2.44	7.58
K _{max}	0.252	0.148	0.600	33.55	2.25	28.50
						1

Natural weathering

- Fiber content was 2.5% by mass of the precursor
- Prismatic specimens with 230 mm x 50 mm x 10 mm
 - LOP and specific energy from 3-point bending tests were the indicators of degradation

Results

Load x deflection curves

Main findings

- Sisal fibers are promoting post-cracking strength for all series even after 120 day of exposure
- Series with a higher content of free ions exhibited lower performance, regardless of the type of exposure
- Natural weathering proved to be more severe than laboratory conditions
- Under natural weathering, the K_{min} series demonstrated the best performance
- At the maximum free ion content, both Na and K series caused significant changes in the behavior of the composites

Limite of proportionality

Main findings

- Natural weathering caused greater reductions in the LOP compared to laboratory conditions
- Even at minimum concentrations, Na ions seem to induce a rapid decrease in the LOP
- For the K_{min} series, changes in the LOP were minimal
- At the maximum free ion content, both Na and K series significantly affected the LOP

Specific energy

Main findings

- Specific energy (SE) decreases over time, even under laboratory conditions
- Na ions appear to be more aggressive than K ions
- Even at minimum concentrations, Nafree ions cause rapid changes in specific energy
- The matrices of the K_{min} series seem to be the least severe for fiber deterioration
- At the maximum free ion content, both Na and K series significantly impacted SE, regardless of the exposure conditions

Microstructural analysis

120Lab

120Nat

Main finding

 At the maximum free ion content, both Na and K series significantly affected fiber integrity and caused damage to the fiber-matrix interface zones

The main conclusions

- Sisal fibers continue to provide post-cracking strength to composites, regardless of the free ion concentration or type of exposure
- The concentration of free ions is a critical factor influencing the degradation rate of vegetable fibers
- Even under laboratory conditions, fiber degradation in AAC is inevitable
- Controlling the aggressiveness of the matrix is a promising strategy to mitigate sisal fiber degradation in alkali-activated composites

Thank you!

Fundação de Amparo à Pesquisa do Estado da Bahia

