

Sisal Fibers Degradation in Cement-Based Composites: The effects of thermal curing conditions and metakaolin content

Íngrid Santana, Ellen Miranda, Pedro Santos Gessivaldo Carneiro and Cleber Dias Federal University of Bahia (UFBA), Salvador-BA, Brazil

Topics of this presentation

- **■** Brief contextualization
- **■** Experimental procedure
	- **•** Materials
	- \blacksquare 2^k factorial design
	- § Strand-in-cement test
		- XRD of the matrix
		- **•** Tensile strength of fibers
- § Results
- **■** Main findings

Brief contextualization

Aiming for thermal comfort, hollow elements were common in Brazilian architectural designs in the mid-20th century.

[http://www.eng.ufba.br/histor](http://www.eng.ufba.br/historia)ia

 \mathcal{L}

Nowadays, sculptural hollow elements have become a trend in Brazil, offering both thermal comfort and energy efficiency

[Continua —](https://www.erwinhauer.com/continua) Erwin Hauer

Questions

If hollow elements are produced using sisal fiber-reinforced cementitious composites:

- Can thermal curing be applied to accelerate strength development and reduce demolding time without causing sisal fiber degradation?
- Can metakaolin be used to mitigate sisal fiber degradation during thermal curing?

Experimental

Materials

- **■** High-early-strength Portland cement
	- Approx.10% limestone filler
- **•** Metakaolin
- **Sisal fibers subjected to hornification**
	- § 5 wetting-and-drying cycles
	- **Sisal fibers exhibited a tensile strength of** (317.80 ± 36.16) MPa after hornification treatment

2 k factorial design

Strand-in-cement test

Based on the Wei and Meyer (2014) procedure

• The strand-in-cement test allows contact between the fibers and pore water without matrix adhesion

Water bath

Experimental responses

Tensile strength

Results

Phases in the matrix

Phases in the matrix

Main finding

• Portlandite is completely consumed in the series with 40% metakaolin cured at 80°C; however, unreacted clinker phases, including C_3S , remain.

β-Larnite, α-Alite; Bw - brownmillerite; Pr - Periclase; C - Calcite, Q - Quartz, Et - ettringite, Z - Zeolite, Th - Thaumasite, P - Portlandite, He -Hemicarboaluminate.

Low intensity

Moderate intensity

Strong intensity

Traces

Absence

Main finding

Sisal fibers lost their total strength in cement-based matrix without metakaolin when the highest curing temperature (80°C) was used.

S6_MK0%_80°C_72H S11_MK0%_80°C_24H

Tensile strength of fibers

Main findings

- **•** Curing temperature, metakaolin content, and their interaction significantly influenced the tensile strength of sisal fibers.
- Sisal fibers completely lost their strength in a cement-based matrix without metakaolin when the highest curing temperature (80°C) was applied.
- Metakaolin contributes to preserving the mechanical strength of the fibers, regardless of the curing temperature.

Reference \rightarrow (317.80 ± 36.16) MPa

Tensile Strength (MPa)

Thank you!

Fundação de Amparo à Pesquisa do Estado da Bahia

