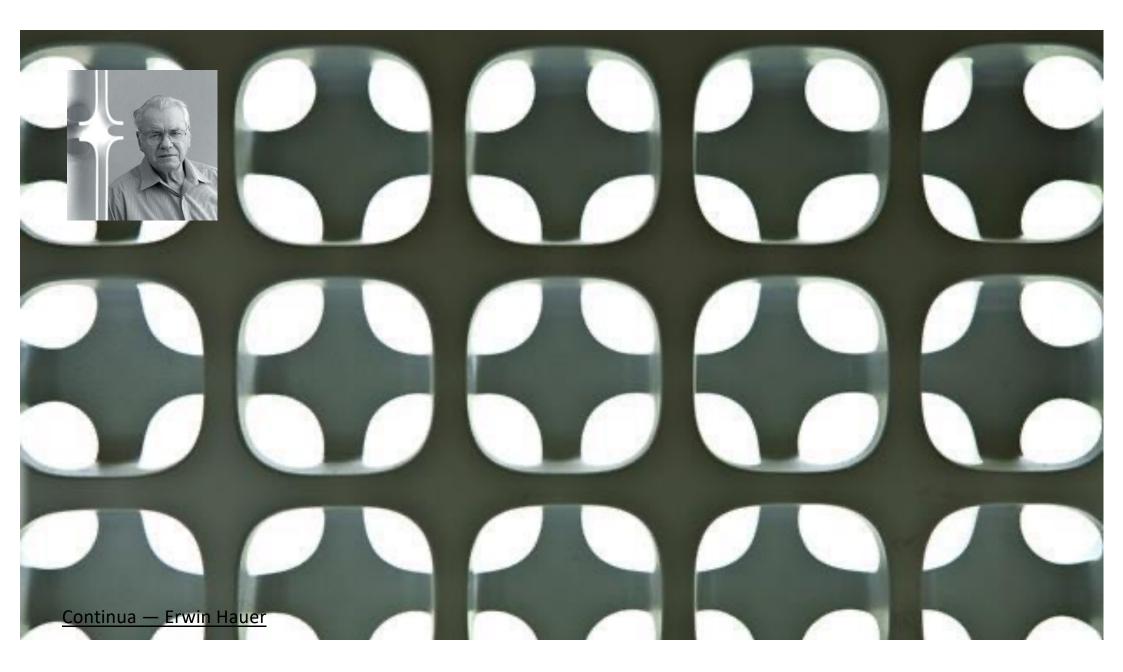


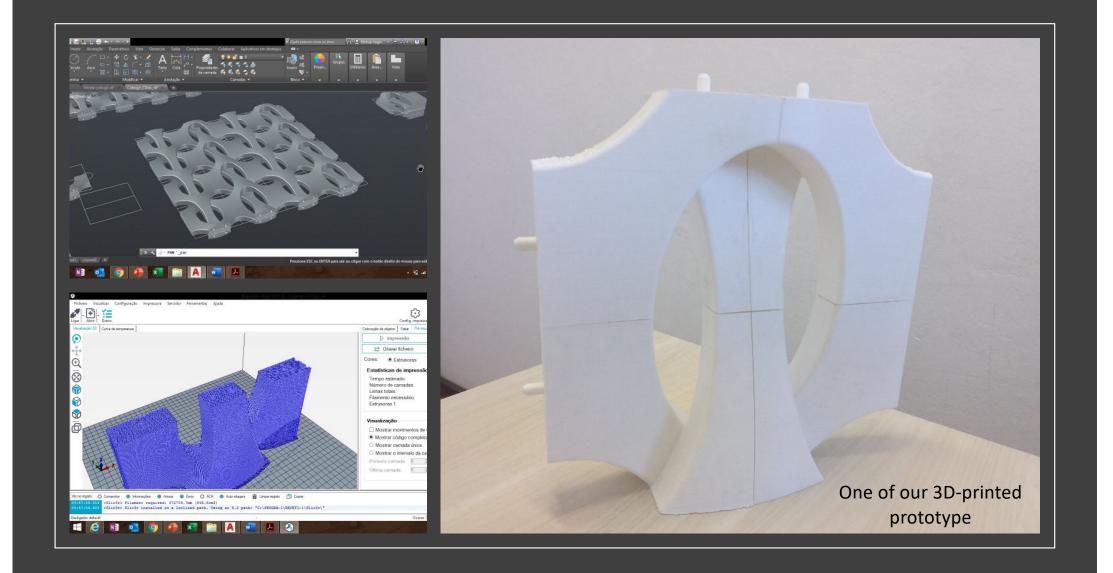
Sisal Fibers Degradation in Cement-Based Composites: The effects of thermal curing conditions and metakaolin content

Íngrid Santana, Ellen Miranda, Pedro Santos Gessivaldo Carneiro and Cleber Dias Federal University of Bahia (UFBA), Salvador-BA, Brazil

Topics of this presentation

- Brief contextualization
- Experimental procedure
 - Materials
 - 2^k factorial design
 - Strand-in-cement test
 - XRD of the matrix
 - Tensile strength of fibers
- Results
- Main findings


Brief contextualization


Aiming for thermal comfort, hollow elements were common in Brazilian architectural designs in the mid-20th century.

http://www.eng.ufba.br/historia

Nowadays, sculptural hollow elements have become a trend in Brazil, offering both thermal comfort and energy efficiency

Continua — Erwin Hauer

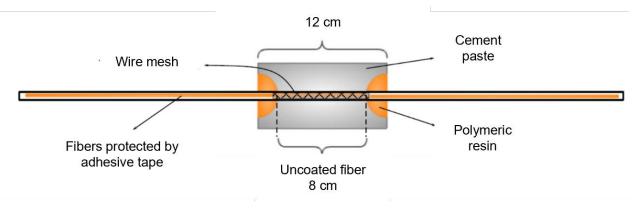
Questions

If hollow elements are produced using sisal fiber-reinforced cementitious composites:

- Can thermal curing be applied to accelerate strength development and reduce demolding time without causing sisal fiber degradation?
- Can metakaolin be used to mitigate sisal fiber degradation during thermal curing?

Experimental

Materials


- High-early-strength Portland cement
 - Approx.10% limestone filler
- Metakaolin
- Sisal fibers subjected to hornification
 - 5 wetting-and-drying cycles
 - Sisal fibers exhibited a tensile strength of (317.80 ± 36.16) MPa after hornification treatment

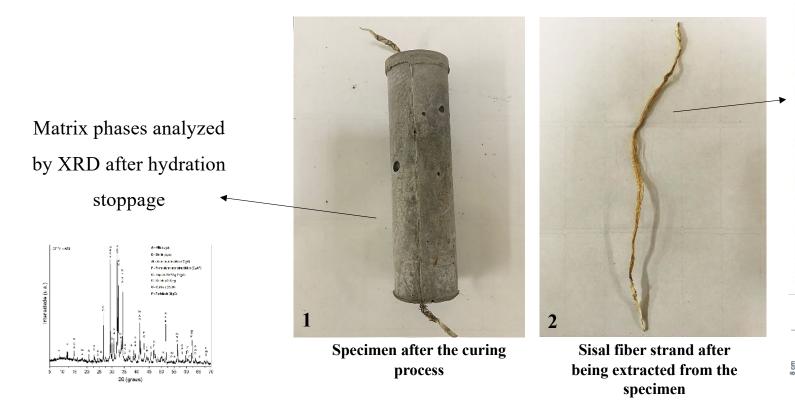
2^k factorial design

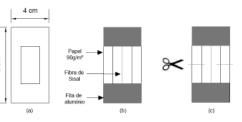
Factors	Minimum	Maximum
Metakaolin content MK	0	40%
Curing temperature T	25°C	80°C
Curing time t	24 h	72 h

	Series	Codif	ied level of fa	ictors	Act	ual level of fact	ors
Run order	Label	MK	Т	t	MK (%)	T (°C)	t (h)
S10	MK40%_80°C_72H	+1	+1	+1	40	80	72
S2	MK40%_80°C_24H	+1	+1	-1	40	80	24
S7	MK40%_25°C_72H	+1	-1	+1	40	25	72
S8	MK40%_25°C_24H	+1	-1	-1	40	25	24
S6	MK0%_80°C_72H	-1	+1	+1	0	80	72
S11	MK0%_80°C_24H	-1	+1	-1	0	80	24
S3	MK0%_25°C_72H	-1	-1	+1	0	25	72
S9	MK0%_25°C_24H	-1	-1	-1	0	25	24
S1	MK20%_52.5°C_48H	0	0	0	20	52.5	48
S4	MK20%_52.5°C_48H	0	0	0	20	52.5	48
S5	MK20%_52.5°C_48H	0	0	0	20	52.5	48
Minimum		-1	-1	-1	0	25	24
Maximum		+1	+1	+1	40	80	72

Strand-in-cement test

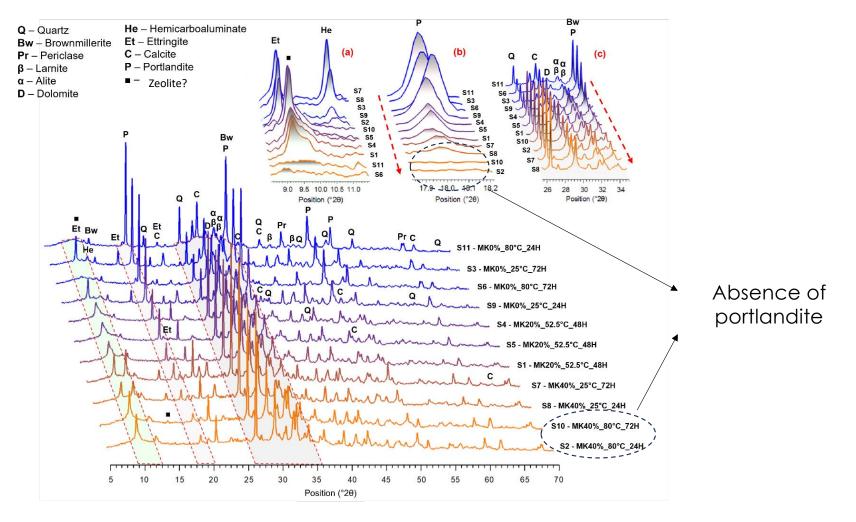
Based on the Wei and Meyer (2014) procedure


 The strand-in-cement test allows contact between the fibers and pore water without matrix adhesion


Water bath

Experimental responses

Tensile strength



Results

Phases in the matrix

Phases in the matrix

	Phases by qualitative XRD analysis ^a											
Series		β	α	Bw	<u>Pr</u>	С	Q	Et	Z or Th?	P	Не	S_t (MPa)
MK40%_80°C_72H	S10											296 ± 29
MK40%_80°C_24H	S2											297 ± 20
MK40%_25°C_72H	S 7											141 ± 59
MK40%_25°C_24H	S 8											239 ± 16
MK0%_80°C_72H	S6											
MK0%_80°C_24H	S11											
MK0%_25°C_72H	S3											99 ± 13
MK0%_25°C_24H	S9											97 ± 43
MK20%_52.5°C_48H	S1											227 ± 31
MK20%_52.5°C_48H	S4											113 ± 65
MK20%_52.5°C_48H	S5								3			157 ± 22
Minimum												0
Maximum							297					

Main finding

 Portlandite is completely consumed in the series with 40% metakaolin cured at 80°C; however, unreacted clinker phases, including C₃S, remain.

^a β-Larnite, α - Alite; Bw - brownmillerite; Pr - Periclase; C - Calcite, Q - Quartz, Et - ettringite, Z - Zeolite, Th - Thaumasite, P - Portlandite, He Hemicarboaluminate.

Low intensity

Moderate intensity

Strong intensity

Traces

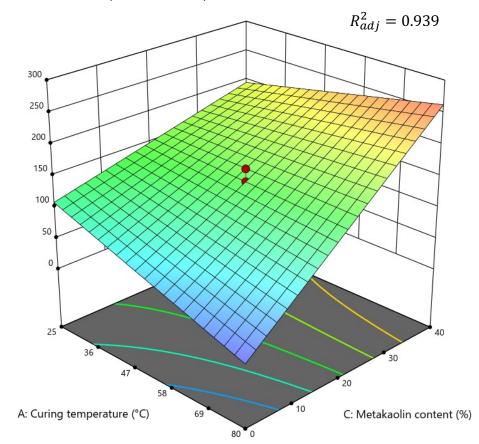
Absence

Main finding

 Sisal fibers lost their total strength in cement-based matrix without metakaolin when the highest curing temperature (80°C) was used.

S6_MK0%_80°C_72H

S11_MK0%_80°C_24H


Tensile strength of fibers

Main findings

- Curing temperature, metakaolin content, and their interaction significantly influenced the tensile strength of sisal fibers.
- Sisal fibers completely lost their strength in a cement-based matrix without metakaolin when the highest curing temperature (80°C) was applied.
- Metakaolin contributes to preserving the mechanical strength of the fibers, regardless of the curing temperature.

Reference→(317.80 ± 36.16) MPa

Tensile Strength (MPa)

Thank you!

Fundação de Amparo à Pesquisa do Estado da Bahia

