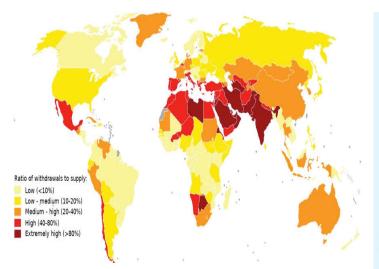


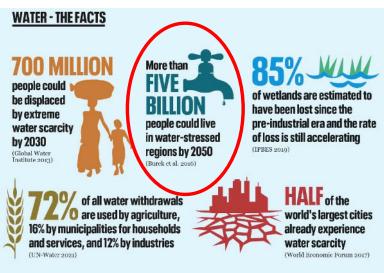
CONTENTS

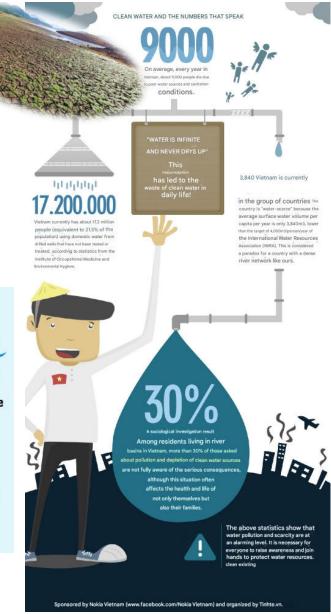
01 INTRODUCTION 03 ACTION

02 IDEA ABOUT RECYCLE WATER 04 RESULTS & CONCLUSION

INTRODUCTION



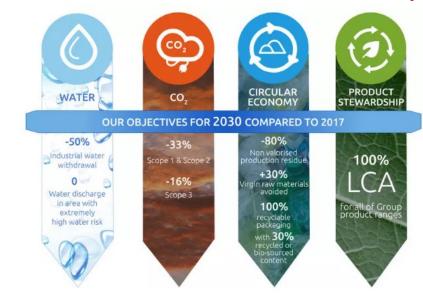



WHERE WE ARE AT THE CURRENT?

- > The problem of pollution and depletion of water resources
- ➤ In Fiber cement plant 1 production line wastewater discharge ~80 m3/day ⇔ 2400 m3/month

80 m3/day ⇔ Water for 88 family (3 persons)/day

WHERE WE ARE AT THE CURRENT?

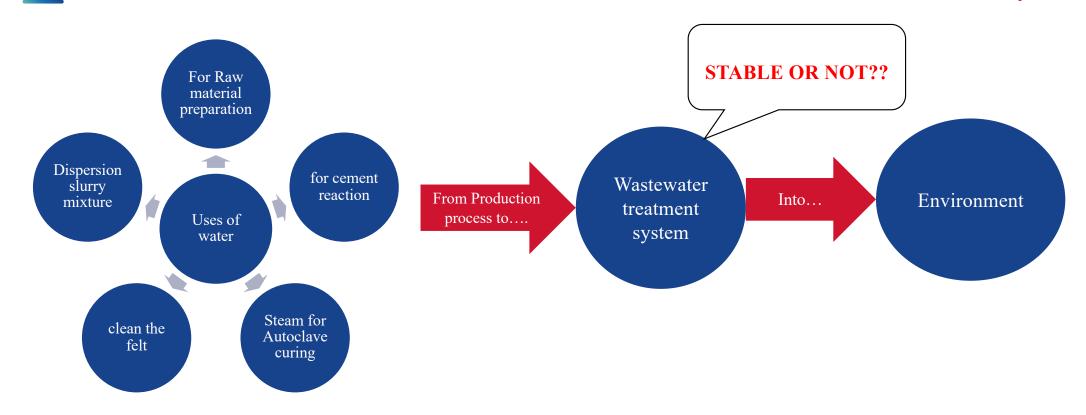


➤ With target of our Saint-gobain group for sustainability to:

Reduce 50% Industrial water for 2030

> Solution for reducing water use :

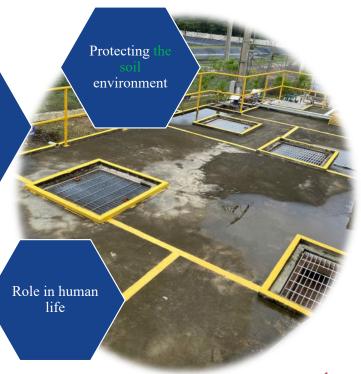
- Optimizing machinery processes
- Reducing leaking
- > Using treated wastewater


IDEA ABOUT RECYCLE WATER

WATER AND WASTEWATER IN FIBER CEMENT PROCESS GROW&

=> Water is very important with fiber cement

THE ROLE OF WASTEWATER TREATMENT SYSTEM



Protecting water and organisms

Helping to treat pollutants and chemicals in fiber cement plant

Waste water treatment system

Ensure wastewater quality for reuse

QUALITY WASTEWATER IN FIBER CEMENT PROCESS

> Define wastewater quality follow QCVN 40/BTNMT -> ensure control of wastewater after treatment

No.	Item	Unit	Wastewater before treatment	Standard	Test method
1	рН		11.5	> 6	>12
2	COD	mg/L	1000-2000	Max 150	SMEWW 5220D:2017
3	BOD5	mg/L	500-1000	Max 100	TCVN 6001-1:2008
4	TSS	mg/L	600	Max200	SMEWW 2540D:2017
5	Total Nitrogen	mg/L	70	40	TCVN 6638:2000
6	Total phosphorus	mg/L	15	6	US EPA Method 200.7
7	Mineral oil	mg/L	100	Max 1	SMEWW 5520B&F: 2017

TOO HIGH OVER STANDARD

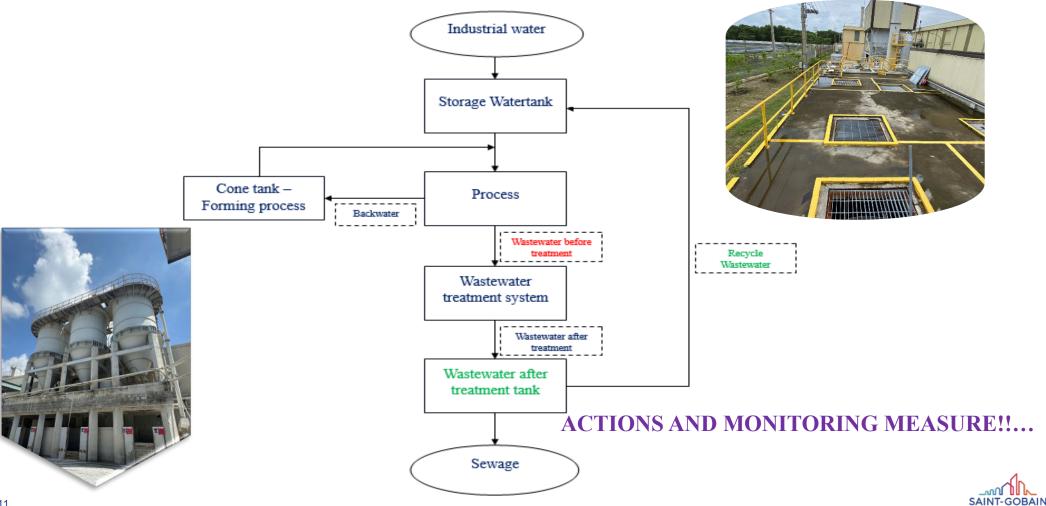
MUST BE TREATMENT TO ADAPT THE VIETNAM STANDARD

WASTEWATER TREATMENT SYSTEM - THE MOST IMPORTANT

THE IDEA OF REUSING WASTEWATER INTO THE PROCESS

SOLUTION FOR:

Reducing 50% Industrial water


WASTEWATER TREATMENT SYSTEM - THE MOST IMPORTANT

REUSING WASTEWATER INTO THE PROCESS

With our idea, we will follow the water cycle process:

ACTIONS

ACTION FOR STABLE QUALITY OF WASTEWATER AFTER TREATMENT

PID controls pH index

200 m3 pool to stabilize

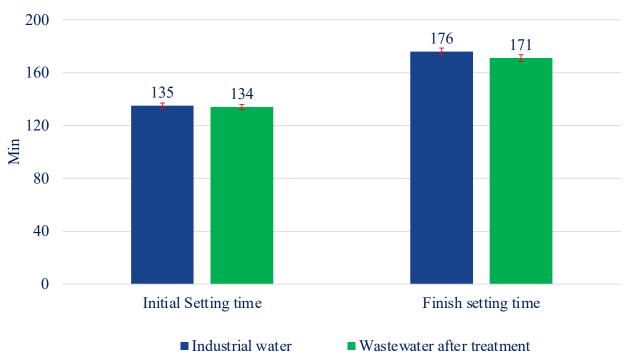
STABLE WASTEWATER AFTER TREATMENT QUALITY DO and mineral oil separator

COD test kit to quickly control and evaluate water

Aerobic Bateria SV30 controlled >150cc/liter

QUALITY OF WASTEWATER AFTER TREATMENT

No.	Wastewater before treatment	Wastewater after treatment	Test method
1			>12
2	TWO ASSESSMENT		EWW 5220D:2017
3			CVN 6001-1:2008
4			EWW 2540D:2017
5		- oa	CVN 6638:2000
6		30ml 100	EPA Method 200.7
7		150	WW 5520B&F: 2017


STABLE QUALITY MORE THAN 12 MONTHS => Confidence to apply use wastewater

to process

SURVEY IMPACT OF WASTEWATER AFTER TREATMENT TO CEMENT SETTING TIME

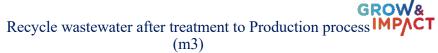
Initial and finish cement setting time with Industrial water/Waste water after treatment

Similar setting time results

Basis for using wastewater after treatment in the production process.

RESULTS & CONCLUSION

APPLY AND RESULTS


pH in wastewater after treatment

Current quality on process and product: no abnormalities

APPLY AND RESULTS

CURRENT

NEXT YEAR

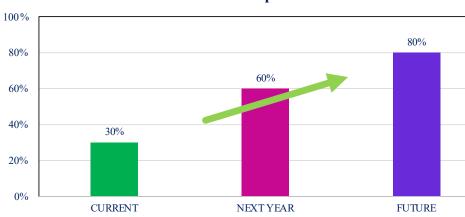
UP TO NOW

FUTURE

REACH 30% RECYCLE WASTEWATER AFTER TREATMENT

Product Quality and Process performance maintain

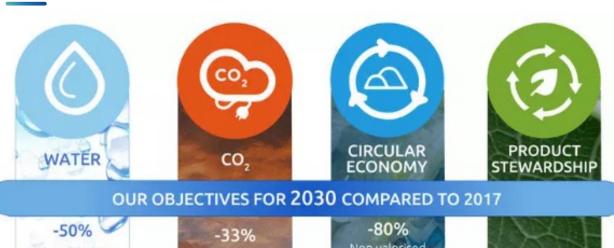
CONCLUSION- OPPORTUNITY


WITH STABLE REUSLT OF WASTEWATER, CAN:

REACH 30% RECYCLE WASTEWATER AFTER TREATMENT WITH NOT AFFECT TO PRODUCT QUALITY – PROCESS PERFORMANCE

>Future application

- \checkmark With this practical approach and step-by-step testing, we expect to 60% recycle wastewater on the process
- ✓ Even higher up to 100%
- => Closing the water circulation circuit without discharging wastewater into the environment.



CONCLUSION- OPPORTUNITY

