

Special Concrete Applications in India Work of the TLC2 CoE

Manu Santhanam

Surendra and Dorothie Shah Chair Professor Department of Civil Engineering, and Coordinator, Centre of Excellence on Technologies for Low Carbon and Lean Construction (TLC2) IIT Madras

IIBCC Colombo, Nov 2024

Centre of Excellence on **Technologies for** Low-Carbon and Lean Construction

K RAMAMURTHY

RAVINDRA GETTU

MANU SANTHANAM

KEERTHANA KIRUPAKARAN

KOSHY VARGHESE

BENNY

RAPHAEL

ASLAM KUNHI MOHAMED

RADHAKRISHNA

PILLAI

PIYUSH

CHAUNSALI

SURENDER SINGH

ASHWIN MAHALINGAM

SIVAKUMAR

NIKHIL

BUGALIA

MURALI JAGANNATHAN

Relevance: Construction materials, Construction management, and building science

More than 30 collaborators internationally

Vision Zero-Carbon & Zero-Waste Construction

Recycled Aggregates

RCA through solar processing

Use of Recycled Asphalt Pavement (RAP)

19.62

R10L8 R40L6 R40L8

13.97

16.37

 More than 100 m Image: Second se		0	Ø	Ó	Ø		Ø			
	Failure mode	Mode I: Cohesion failure of mortar	Mode II: Adhesion failure at the asphalt- mortar interface	Mode III: Cohesion failure of asphalt	Mode IV: Adhesion failure at the asphalt- aggregate interface		Mode V: Cohesion ailure of aggregate	5.7	74	16.24
	Prevalent conditions	Not observed	Mostly for limestone and sandstone aggregates when used for mortar grades ≤ M20	Mostly for limestone and sandstone aggregates when used for mortar grades ≥ M30	Prevalent for granite aggregates only		Not observed			1
				Mostly for higher grades of asphalt when aged beyond short- term aging, irrespective of				< t	4058 R10L6	
l				aggregates mineralogy		_				

7

Molecular Modelling

LC3 demonstration projects

» Aggressive groundwater with 17000 mg/l Chloride and 1500 mg/l Sulphate; Frequent inundation of site!

Other structures that have been in service for > 5 years:

- LC3 pavement slab at Chennai
- LC3 parking slab at high altitude (~11000 ft) at Leh

LC3 with low grade limestone

- Limestone which doesn't qualify for cement production
- Contains impurities like silica, clay, dolomite etc. beyond the limits specified
- Dumped in huge quantities in mines

Dolomitic limestones look promising, although siliceous and clayey limestones also perform well

One-part activation of Si-rich precursor

Caustification reaction $Ca(OH)_2 + Na_2CO_3 = CaCO_3 + 2NaOH$

Reaction products

Silica gel, CaCO₃, Ca- modified silica gel and C-S-H

One-part activation of Si-rich precursor

Mortars (one-part activation) RHA + Glass Waste Biomass ash 20 MPa **Calcite-like** (paper industry) 10 MPa RHA + Granite Waste 12 MPa Ca-modified silica gel

Alkali-activated

Semi-crystalline CaCO₃

Morphology

of reaction

products

Silica gel

Textile Reinforced Concrete (TRC)

Influence of number of layers, textile geometry etc. also studied

Applications: column strengthening, water tank, ring modules for sewage treatment system

Strain

Fibre Reinforced Concrete (FRC)

				-						
•		Unnotched Beam Test	Notched Beam Test							
•	ControlDisplacementVariable		CMOD							
•	Occurrence of Crack	Within middle third span Image: span span span span span span span span	At the central span: Variability and scatter are less							
	Measuring devices	LVDTs for displacement	Clip gage for CMOD (LVDTs optional)							
	Toughness characterization 15									

TIC₂

Fibre Reinforced Concrete (FRC) – Long Term Creep

Notches of 25 mm depth and 3 mm width were made by wet saw cutting at mid span

Specimens in controlled environment, Temp 25°C and 65% RH

according to EN 14651 with CMOD control

Load cells measure load and CMOD is measured by clip gauges which is connected to DAQ which monitors continuously

viscoelastic solid like response

TIC₂

Fibre Reinforced Concrete (FRC) – Plastic state cracking

Plastic shrinkage cracking reduces with the incorporation of coir fibres in the mix.

Cracks mitigated in 0.1% dosage in OPC mix and 0.4% in slag mix irrespective of fibre lengths considered

Someen Sanjeevan Khute, Shoeb Khan

wind velocity)

temperature, relative humidity, and

Keeping in the environmental chamber (Controlled environment with constant

Our Projects

Source Water Characterization

BIS standard

1

0

2

Policy to allow non-potable water (with clear guidelines) in construction

3

Duration (Days)

5

4

6

7

Early Prediction of Failure

- Cross-Referencing Implicit Clauses
- Contract clauses and their risk potential

Stage-wise progress detection

Process mapping of cement manufacturing

Technology Translation

Concrete foundation (1000-year design life) Ayodhya

125 years service life Coastal Bridge, **Kollam**, **Kerala** Durable repair (50-year life extension) Rashtrapati Bhawan, New Delhi

Low-carbon materials

Technology Translation

Lean project delivery for Godrej Constructions, Mumbai

Guest house construction (3D concrete printing) IIT Madras, Chennai

Structural assessment of 3D printed panels

IC2

Our collaborators – Industry

Our collaborators – Academic

North America:

- Massachusetts Institute of Technology
- Oregon State University
- Texas State University
- Clemson University
- Michigan State University
- Stanford University
- Univ. of Texas at Arlington
- Univ. of Toronto
- Virginia Tech Univ.
- Arizona State Univ.

South America:

- Universidad Nacional de La Plata (Argentina)
- Univ. Federal de Rio de Janeiro (Brazil)

South Africa:

- Univ. of Cape Town
- Univ. of Witwatersrand

Australia:

- University of New
 South Wales
- Curtin University

UK & Europe:

- University of Leeds
- Norwegian University of Science and Technology
- Brunel University
- Karlsruhe Institute of Technology, Germany
- Politechnico di Milano, Italy

Asia:

- Hong Kong Polytechnic University (China)
- National University of Singapore
- IIT Bombay
- IIT Roorkee
- IIT Kanpur
- IIT Tirupati
- NIT Calicut
- MACE, Kerala

Thank you!

- manus@iitm.ac.in
- <u>https://civil.iitm.ac.in/faculty/manus</u>
- https://tlc2.iitm.ac.in

Some images taken from the internet for representational purposes.

3rd Young Researchers' Symposium & Awards 2025 on Technologies for Low-Carbon & Lean Construction

About the Symposium

Young Researchers' Symposium is a premium international forum for senior PhD students and recent doctoral graduates to showcase their cutting-edge research outcomes in the areas of Technologies for Low-Carbon and Lean Construction (TLC2).

Prestigious Surendra P. Shah Award is given to the best speaker of YRS

Presidential Distinguished Professor, Center for Advanced Construction Materials University of Texas at Arlington, USA Distinguished Professor, IIT Madras

Winners of previous YRS

Dr. Payam Sadrolodabaee Universitat Politècnica de Catalunya Barcelona, Spain

Dr. Rohit Prajapati University of Cambridge, UK

Dr. Purnima Dogra IIT Delhi, India

What you need to do?

Send 200 words Abstract and 5-minute video on your PhD thesis by November 20, 2024

